Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Agaian, Sos S; DelMarco, Stephen P; Asari, Vijayan K (Ed.)
-
Agaian, Sos S.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)Iris recognition is a widely used biometric technology that has high accuracy and reliability in well-controlled environments. However, the recognition accuracy can significantly degrade in non-ideal scenarios, such as off-angle iris images. To address these challenges, deep learning frameworks have been proposed to identify subjects through their off-angle iris images. Traditional CNN-based iris recognition systems train a single deep network using multiple off-angle iris image of the same subject to extract the gaze invariant features and test incoming off-angle images with this single network to classify it into same subject class. In another approach, multiple shallow networks are trained for each gaze angle that will be the experts for specific gaze angles. When testing an off-angle iris image, we first estimate the gaze angle and feed the probe image to its corresponding network for recognition. In this paper, we present an analysis of the performance of both single and multimodal deep learning frameworks to identify subjects through their off-angle iris images. Specifically, we compare the performance of a single AlexNet with multiple SqueezeNet models. SqueezeNet is a variation of the AlexNet that uses 50x fewer parameters and is optimized for devices with limited computational resources. Multi-model approach using multiple shallow networks, where each network is an expert for a specific gaze angle. Our experiments are conducted on an off-angle iris dataset consisting of 100 subjects captured at 10-degree intervals between -50 to +50 degrees. The results indicate that angles that are more distant from the trained angles have lower model accuracy than the angles that are closer to the trained gaze angle. Our findings suggest that the use of SqueezeNet, which requires fewer parameters than AlexNet, can enable iris recognition on devices with limited computational resources while maintaining accuracy. Overall, the results of this study can contribute to the development of more robust iris recognition systems that can perform well in non-ideal scenarios.more » « less
-
Agaian, Sos S.; Jassim, Sabah A.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)
-
Agaian, Sos S.; Jassim, Sabah A.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)Recognizing the model of a vehicle in natural scene images is an important and challenging task for real-life applications. Current methods perform well under controlled conditions, such as frontal and horizontal view-angles or under optimal lighting conditions. Nevertheless, their performance decreases significantly in an unconstrained environment, that may include extreme darkness or over illuminated conditions. Other challenges to recognition systems include input images displaying very low visual quality or considerably low exposure levels. This paper strives to improve vehicle model recognition accuracy in dark scenes by using a deep neural network model. To boost the recognition performance of vehicle models, the approach performs joint enhancement and localization of vehicles for non-uniform-lighting conditions. Experimental results on several public datasets demonstrate the generality and robustness of our framework. It improves vehicle detection rate under poor lighting conditions, localizes objects of interest, and yields better vehicle model recognition accuracy on low-quality input image data. Grants: This work is supported by the US Department of Transportation, Federal Highway Administration (FHWA), grant contract: 693JJ320C000023 Keywords—Image enhancement, vehicle model andmore » « less
-
Agaian, Sos S.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)High accuracy localization and user positioning tracking is critical in improving the quality of augmented reality environments. The biggest challenge facing developers is localizing the user based on visible surroundings. Current solutions rely on the Global Positioning System (GPS) for tracking and orientation. However, GPS receivers have an accuracy of about 10 to 30 meters, which is not accurate enough for augmented reality, which needs precision measured in millimeters or smaller. This paper describes the development and demonstration of a head-worn augmented reality (AR) based vision-aid indoor navigation system, which localizes the user without relying on a GPS signal. Commercially available augmented reality head-set allows individuals to capture the field of vision using the front-facing camera in a real-time manner. Utilizing captured image features as navigation-related landmarks allow localizing the user in the absence of a GPS signal. The proposed method involves three steps: a detailed front-scene camera data is collected and generated for landmark recognition; detecting and locating an individual’s current position using feature matching, and display arrows to indicate areas that require more data collects if needed. Computer simulations indicate that the proposed augmented reality-based vision-aid indoor navigation system can provide precise simultaneous localization and mapping in a GPS-denied environment. Keywords: Augmented-reality, navigation, GPS, HoloLens, vision, positioning system, localizationmore » « less
-
Agaian, Sos S.; Jassim, Sabah A.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)Neural networks have emerged to be the most appropriate method for tackling the classification problem for hyperspectral images (HIS). Convolutional neural networks (CNNs), being the current state-of-art for various classification tasks, have some limitations in the context of HSI. These CNN models are very susceptible to overfitting because of 1) lack of availability of training samples, 2) large number of parameters to fine-tune. Furthermore, the learning rates used by CNN must be small to avoid vanishing gradients, and thus the gradient descent takes small steps to converge and slows down the model runtime. To overcome these drawbacks, a novel quaternion based hyperspectral image classification network (QHIC Net) is proposed in this paper. The QHIC Net can model both the local dependencies between the spectral channels of a single-pixel and the global structural relationship describing the edges or shapes formed by a group of pixels, making it suitable for HSI datasets that are small and diverse. Experimental results on three HSI datasets demonstrate that the QHIC Net performs on par with the traditional CNN based methods for HSI Classification with a far fewer number of parameters. Keywords: Classification, deep learning, hyperspectral imaging, spectral-spatial feature learningmore » « less
An official website of the United States government
